A long chain of P-points

Boriša Kuzeljević

University of Novi Sad

Winter School in Abstract Analysis Set Theory & Topology

Kuzeljević (UNS)

A long chain of P-points

Joint work with Dilip Raghavan

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 2 / 16

P-points

Definition

Ultrafilter \mathcal{U} on ω is a *P*-point if and only if for every countable collection $\{a_n : n < \omega\} \subset \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \subset^* a_n$ for each $n < \omega$.

SQR

イロト 不得下 イヨト イヨト 二日

P-points

Definition

Ultrafilter \mathcal{U} on ω is a *P*-point if and only if for every countable collection $\{a_n : n < \omega\} \subset \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \subset^* a_n$ for each $n < \omega$.

- In the fifties, W. Rudin showed that they consistently exist;
- In the seventies, Shelah showed that their existence cannot be proved in ZFC only;
- Choquet calls them *ultrafiltres absolument 1-simples* or δ -stables;
- MA(σ-centered) implies the existence of 2^c P-points (both CH and PFA imply MA(σ-centered));
- there are equivalent definitions which rely on model theoretic and topological notions.

Kuzeljević (UNS)

A long chain of P-points

Rudin-Keisler ordering

Definition

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on ω . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a map $f : \omega \to \omega$ such that for every $a \subset \omega$, $a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}$.

SQR

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Rudin-Keisler ordering

Definition

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on ω . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a map $f : \omega \to \omega$ such that for every $a \subset \omega$, $a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}$.

- If \mathcal{U} is Rudin-Keisler reducible to \mathcal{V} we write $\mathcal{U} \leq_{RK} \mathcal{V}$;
- Relation \leq_{RK} is a quasi-ordering on the set of all ultrafilters on ω ;
- If both $\mathcal{U} \leq_{RK} \mathcal{V}$ and $\mathcal{V} \leq_{RK} \mathcal{U}$ hold, we say that \mathcal{U} and \mathcal{V} are Rudin-Keisler equivalent ($\mathcal{U} \equiv_{RK} \mathcal{V}$);

Rudin-Keisler ordering

Theorem (Kunen 1972)

There are ultrafilters \mathcal{U} and \mathcal{V} on ω such that $\mathcal{U} \not\leq_{RK} \mathcal{V}$ and $\mathcal{V} \not\leq_{RK} \mathcal{U}$.

Theorem (Keisler)

CH implies the existence of 2^c RK-incomparable selective ultrafilters.

Theorem (Blass 1973)

MA(σ -centered) implies that ω_1 embeds into $\langle \mathcal{R}, \leq_{RK} \rangle$.

Problem (Blass 1973)

Is there a c^+ -chain of P-points under Rudin-Keisler ordering?

Theorem (Rosen 1985)

CH implies that ω_1 embeds as an initial segment into $\langle \mathcal{R}, \leq_{RK} \rangle$.

Kuzeljević (UNS)

A long chain of P-points

Definition

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on ω . We say that \mathcal{U} is *Tukey* reducible to \mathcal{V} if there is a monotone map $\phi : \mathcal{V} \to \mathcal{U}$ which is cofinal in \mathcal{U} .

SQR

イロト 不得下 イヨト イヨト 二日

Definition

Suppose that \mathcal{U} and \mathcal{V} are ultrafilters on ω . We say that \mathcal{U} is *Tukey* reducible to \mathcal{V} if there is a monotone map $\phi : \mathcal{V} \to \mathcal{U}$ which is cofinal in \mathcal{U} .

- If \mathcal{U} is Tukey reducible to \mathcal{V} , we write $\mathcal{U} \leq_T \mathcal{V}$;
- If $\mathcal{U} \leq_T \mathcal{V}$ and $\mathcal{V} \leq_T \mathcal{U}$, then we say that \mathcal{U} and \mathcal{V} are Tukey equivalent $(\mathcal{U} \equiv_T \mathcal{V})$;
- If $\mathcal{U} \leq_{RK} \mathcal{V}$, then $\mathcal{U} \leq_T \mathcal{V}$;
- $[\mathfrak{c}]^{<\omega}$ has maximal Tukey type among all directed sets of cardinality \mathfrak{c} .

Theorem (Isbell 1965)

There is an ultrafilter \mathcal{U} on ω such that $\mathcal{U} \equiv_{\mathcal{T}} [c]^{<\omega}$.

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 7 / 16

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

Theorem (Isbell 1965)

There is an ultrafilter \mathcal{U} on ω such that $\mathcal{U} \equiv_{\mathcal{T}} [c]^{<\omega}$.

Problem (Isbell 1965)

Is there an ultrafilter which is not Tukey equivalent to $[c]^{<\omega}$?

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 7 / 16

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Theorem (Dobrinen-Todorčević 2011)

Suppose that \mathcal{V} is a P-point, \mathcal{U} an arbitrary ultrafilter on ω , and $\mathcal{U} \leq_T \mathcal{V}$. Then there is a continuous monotone map $\phi : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $\phi \upharpoonright \mathcal{V}$ is cofinal in \mathcal{U} .

200

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

Theorem (Dobrinen-Todorčević 2011)

Suppose that \mathcal{V} is a P-point, \mathcal{U} an arbitrary ultrafilter on ω , and $\mathcal{U} \leq_T \mathcal{V}$. Then there is a continuous monotone map $\phi : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $\phi \upharpoonright \mathcal{V}$ is cofinal in \mathcal{U} .

• This implies that every P-point can have at most c predecessors.

200

Theorem (Dobrinen-Todorčević 2011)

Suppose that \mathcal{V} is a P-point, \mathcal{U} an arbitrary ultrafilter on ω , and $\mathcal{U} \leq_T \mathcal{V}$. Then there is a continuous monotone map $\phi : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $\phi \upharpoonright \mathcal{V}$ is cofinal in \mathcal{U} .

• This implies that every P-point can have at most c predecessors.

Theorem (Dobrinen-Todorčević 2011)

CH implies that \mathfrak{c} embeds into $\langle \mathcal{R}, \leq_T \rangle$.

200

- 4 同 ト 4 ヨ ト - ヨ

Theorem (Dobrinen-Todorčević 2011)

Suppose that \mathcal{V} is a P-point, \mathcal{U} an arbitrary ultrafilter on ω , and $\mathcal{U} \leq_T \mathcal{V}$. Then there is a continuous monotone map $\phi : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $\phi \upharpoonright \mathcal{V}$ is cofinal in \mathcal{U} .

• This implies that every P-point can have at most c predecessors.

Theorem (Dobrinen-Todorčević 2011)

CH implies that \mathfrak{c} embeds into $\langle \mathcal{R}, \leq_T \rangle$.

Problem (Dobrinen-Todorčević 2011)

Is there a c^+ -sequence of P-points under Tukey ordering?

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 8 / 16

200

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Embedding of $\mathcal{P}(\omega)/fin$

Theorem (Raghavan-Shelah 2017)

MA(σ -centered) implies that $\langle \mathcal{P}(\omega) / Fin, \subset^* \rangle$ embeds into both $\langle \mathcal{R}, \leq_T \rangle$ and $\langle \mathcal{R}, \leq_{RK} \rangle$.

• In particular this implies that any poset of size c can be embedded into $\langle \mathcal{R}, \leq_{RK} \rangle$ and $\langle \mathcal{R}, \leq_T \rangle$.

SQA

A long chain

Theorem (K-Raghavan)

CH implies that there is a \mathfrak{c}^+ sequence of P-points under both Rudin-Keisler and Tukey ordering.

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 10 / 16

3

SQR

イロト イポト イヨト イヨト

A long chain

Theorem (K-Raghavan)

CH implies that there is a c^+ sequence of P-points under both Rudin-Keisler and Tukey ordering.

- Key notion: δ -generic sequence of P-points;
- We only have to worry about c many Tukey maps;
- In a forthcoming paper of D. Raghavan and J. Verner, a simpler proof of this result will be presented.

Kuzeljević (UNS)

A long chain of P-points

SQA

イロト イポト イヨト イヨト

Basic poset

Definition

 \mathbb{P} is the set of all sequences $c: \omega \to [\omega]^{<\omega} \setminus \{0\}$ such that for each $n \in \omega$, both |c(n)| < |c(n+1)| and $\max(c(n)) < \min(c(n+1))$ hold.

If $c, d \in \mathbb{P}$, then $c \leq d$ if there is an $l < \omega$ such that

 $\forall m \ge I \exists n \ge m \ [c(m) \subset d(n)].$

¹set(*c*) denotes the set $\bigcup_{n < \omega} c(n)$

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 11 / 16

Basic poset

Definition

 \mathbb{P} is the set of all sequences $c: \omega \to [\omega]^{<\omega} \setminus \{0\}$ such that for each $n \in \omega$, both |c(n)| < |c(n+1)| and $\max(c(n)) < \min(c(n+1))$ hold.

If $c, d \in \mathbb{P}$, then $c \leq d$ if there is an $l < \omega$ such that

 $\forall m \geq I \exists n \geq m \ [c(m) \subset d(n)].$

• Note that if $c \leq d$, then $\operatorname{set}(c) \subset^* \operatorname{set}(d)^1$.

¹set(*c*) denotes the set $\bigcup_{n < \omega} c(n)$

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 11 / 16

Adding an ultrafilter on top

Definition

Let \mathbb{Q}^{δ} be the set of all $q = \langle c_q, \gamma_q, X_q, \langle \pi_{q,\alpha} : \alpha \in X_q \rangle \rangle$ such that:

- $c_q \in \mathbb{P}$;
- $\gamma_{q} \leq \delta$;
- $X_q \in [\delta]^{\leq \omega}$ is such that $\gamma_q = \sup(X_q)$, and that $\gamma_q \in X_q$ iff $\gamma_q < \delta$;
- $\pi_{q,\alpha}$ ($\alpha \in X_q$) are maps from ω^{ω} such that:

$$\pi_{q,\alpha}^{\prime\prime}\mathsf{set}(c_q) \in \mathcal{U}_{\alpha};$$

- $\forall \alpha, \beta \in X_q \ [\alpha \leq \beta \Rightarrow \forall^{\infty} k \in set(c_q) \ [\pi_{q,\alpha}(k) = \pi_{\beta,\alpha}(\pi_{q,\beta}(k))]];$
- there are $\psi_{q,\alpha} \in \omega^{\omega}$ and $b_{q,\alpha} \geq c_q$ such that $\langle \pi_{q,\alpha}, \psi_{q,\alpha}, b_{q,\alpha} \rangle$ is a normal triple;

Ordering on \mathbb{Q}^{δ} is given by: $q_1 \leq q_0$ if and only if

$$c_{q_1} \leq c_{q_0}, \text{ and } X_{q_1} \supset X_{q_0}, \text{ and for every } \alpha \in X_{q_0}, \ \pi_{q_1, \alpha} = \pi_{q_0, \alpha}.$$

Kuzeljević (UNS)

δ -generic sequence of P-points

Let $\delta \leq \omega_2$. We call a sequence $\langle \langle c_i^{\alpha} : i < \mathfrak{c}, \alpha < \delta \rangle, \langle \pi_{\beta, \alpha} : \alpha \leq \beta < \delta \rangle \rangle$ δ -generic if and ony if:

- for every $\alpha < \delta$, $\langle c_i^{\alpha} : i < \mathfrak{c} \rangle$ is a decreasing sequence in \mathbb{P} ; for every $\alpha \leq \beta < \delta$, $\pi_{\beta,\alpha} \in \omega^{\omega}$;
- for every $\alpha < \delta$, $\mathcal{U}_{\alpha} = \{a \in \mathcal{P}(\omega) : \exists i < \mathfrak{c} [\operatorname{set}(c_i^{\alpha}) \subset^* a]\}$ is an ultrafilter on ω and it is a rapid² P-point;
- for every $\alpha < \beta < \delta$, every normal triple $\langle \pi_1, \psi_1, b_1 \rangle$ and every $d \le b_1$ if $\pi_1'' \operatorname{set}(d) \in \mathcal{U}_{\alpha}$, then for every $a \in \mathcal{U}_{\beta}$ there is $b \in \mathcal{U}_{\beta}$ such that $b \subset^* a$ and that there are $\pi, \psi \in \omega^{\omega}$ and $d^* \le_0 d$ so that $\langle \pi, \psi, d^* \rangle$ is a normal triple, $\pi'' \operatorname{set}(d^*) = b$ and $\forall k \in \operatorname{set}(d^*) [\pi_1(k) = \pi_{\beta,\alpha}(\pi(k))].$

 $^{2}\mathcal{U}$ is rapid if for every $f \in \omega^{\omega}$ there is $X \in \mathcal{U}$ such that $X(n) \geq f(n)$ for each $n < \omega$

δ -generic sequence of P-points

- if $\alpha < \beta < \delta$, then $\mathcal{U}_{\beta} \not\leq_{T} \mathcal{U}_{\alpha}$.
- for every $\alpha < \delta$, $\pi_{\alpha,\alpha} = \text{id and}$:
 - $\bullet \ \forall \alpha \leq \beta < \delta \ \forall i < \mathfrak{c} \ [\pi_{\beta,\alpha}^{\prime\prime} \operatorname{set}(c_i^{\beta}) \in \mathcal{U}_{\alpha}];$
 - $\bullet \ \forall \alpha \leq \beta \leq \gamma < \delta \ \exists i < \mathfrak{c} \ \forall^{\infty} k \in \operatorname{set}(c_i^{\gamma}) \ [\pi_{\gamma,\alpha}(k) = \pi_{\beta,\alpha}(\pi_{\gamma,\beta}(k))];$
 - ▶ for $\alpha < \beta < \delta$ there are $i < \mathfrak{c}$, $b_{\beta,\alpha} \in \mathbb{P}$ and $\psi_{\beta,\alpha} \in \omega^{\omega}$ such that $\langle \pi_{\beta,\alpha}, \psi_{\beta,\alpha}, b_{\beta,\alpha} \rangle$ is a normal triple and $c_i^{\beta} \leq b_{\beta,\alpha}$;

San

・ロト ・雪ト ・ヨト ・ヨー

δ -generic sequence of P-points

- if $\mu < \delta$ is a limit ordinal such that $cof(\mu) = \omega$, $X \subset \mu$ is a countable set such that $sup(X) = \mu$, $\langle d_j : j < \omega \rangle$ is a decreasing sequence of conditions in \mathbb{P} , and $\langle \pi_{\alpha} : \alpha \in X \rangle$ is a sequence of maps in ω^{ω} such that:
 - $\forall \alpha \in X \ \forall j < \omega \ [\pi''_{\alpha} \operatorname{set}(d_j) \in \mathcal{U}_{\alpha}];$
 - $\bullet \ \forall \alpha, \beta \in X \ [\alpha \leq \beta \Rightarrow \exists j < \omega \ \forall^{\infty} k \in set(d_j) \ [\pi_{\alpha}(k) = \pi_{\beta,\alpha}(\pi_{\beta}(k))]];$
 - for all $\alpha \in X$ there are $j < \omega$, $b_{\alpha} \in \mathbb{P}$ and $\psi_{\alpha} \in \omega^{\omega}$ such that $\langle \pi_{\alpha}, \psi_{\alpha}, b_{\alpha} \rangle$ is a normal triple and $d_j \leq b_{\alpha}$;

then the set of all $i^* < \mathfrak{c}$ such that there are $d^* \in \mathbb{P}$ and $\pi, \psi \in \omega^{\omega}$ satisfying:

- $\forall j < \omega \ [d^* \leq d_j] \text{ and } \operatorname{set}(c_{i^*}^{\mu}) = \pi'' \operatorname{set}(d^*);$
- $\forall \alpha \in X \ \forall^{\infty} k \in set(d^*) \ [\pi_{\alpha}(k) = \pi_{\mu,\alpha}(\pi(k))];$
- $\langle \pi, \psi, d^* \rangle$ is a normal triple;

is cofinal in \mathfrak{c} ;

Kuzeljević (UNS)

A long chain of P-points

Problem

Problem

Which partial orders can be embedded into $\langle \mathcal{R}, \leq_{RK} \rangle$ under suitable hypothesis?

Kuzeljević (UNS)

A long chain of P-points

Hejnice, January 29, 2019 16 / 16

3

500

イロト イポト イヨト イヨト

Problem

Problem

Which partial orders can be embedded into $\langle \mathcal{R}, \leq_{RK} \rangle$ under suitable hypothesis?

- Such a poset must be of cardinality at most 2^c;
- Such a poset must be locally c, i.e. each element can have only c many predecessors.
- It is plausible that these are the only two obstacles.

Kuzeljević (UNS)

A long chain of P-points

200

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ